skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilde, Mark M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a versatile privacy framework for quantum systems, termed quantum pufferfish privacy (QPP). Inspired by classical pufferfish privacy, our formulation generalizes and addresses limitations of quantum differential privacy by offering flexibility in specifying private information, feasible measurements, and domain knowledge. We show that QPP can be equivalently formulated in terms of the Datta–Leditzky information spectrum divergence, thus providing the first operational interpretation thereof. We reformulate this divergence as a semi-definite program and derive several properties of it, which are then used to prove convexity, composability, and post-processing of QPP mechanisms. Parameters that guarantee QPP of the depolarization mechanism are also derived. We analyze the privacy-utility tradeoff of general QPP mechanisms and, again, study the depolarization mechanism as an explicit instance. The QPP framework is then applied to privacy auditing for identifying privacy violations via a hypothesis testing pipeline that leverages quantum algorithms. Connections to quantum fairness and other quantum divergences are also explored and several variants of QPP are examined. 
    more » « less
  2. The fidelity-based smooth min-relative entropy is a distinguishability measure that has appeared in a variety of contexts in prior work on quantum information, including resource theories like thermodynamics and coherence. Here we provide a comprehensive study of this quantity. First we prove that it satisfies several basic properties, including the data-processing inequality. We also establish connections between the fidelity-based smooth min-relative entropy and other widely used information-theoretic quantities, including smooth min-relative entropy and smooth sandwiched Rényi relative entropy, of which the sandwiched Rényi relative entropy and smooth max-relative entropy are special cases. After that, we use these connections to establish the second-order asymptotics of the fidelity-based smooth min-relative entropy and all smooth sandwiched Rényi relative entropies, finding that the first-order term is the quantum relative entropy and the second-order term involves the quantum relative entropy variance. Utilizing the properties derived, we also show how the fidelity-based smooth min-relative entropy provides one-shot bounds for operational tasks in general resource theories in which the target state is mixed, with a particular example being randomness distillation. The above observations then lead to second-order expansions of the upper bounds on distillable randomness, as well as the precise second-order asymptotics of the distillable randomness of particular classical-quantum states. Finally, we establish semi-definite programs for smooth max-relative entropy and smooth conditional min-entropy, as well as a bilinear program for the fidelity-based smooth min-relative entropy, which we subsequently use to explore the tightness of a bound relating the last to the first. 
    more » « less
  3. The concept of antidistinguishability of quantum states has been studied to investigate foundational questions in quantum mechanics. It is also called quantum state elimination, because the goal of such a protocol is to guess which state, among finitely many chosen at random, the system is not prepared in (that is, it can be thought of as the first step in a process of elimination). Antidistinguishability has been used to investigate the reality of quantum states, ruling out psi-epistemic ontological models of quantum mechanics (Pusey et al. in Nat Phys 8(6):475–478, 2012). Thus, due to the established importance of antidistinguishability in quantum mechanics, exploring it further is warranted. In this paper, we provide a comprehensive study of the optimal error exponent—the rate at which the optimal error probability vanishes to zero asymptotically—for classical and quantum antidistinguishability. We derive an exact expression for the optimal error exponent in the classical case and show that it is given by the multivariate classical Chernoff divergence. Our work thus provides this divergence with a meaningful operational interpretation as the optimal error exponent for antidistinguishing a set of probability measures. For the quantum case, we provide several bounds on the optimal error exponent: a lower bound given by the best pairwise Chernoff divergence of the states, a single-letter semi-definite programming upper bound, and lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit expression for the optimal error exponent for quantum antidistinguishability. 
    more » « less
  4. The concept of antidistinguishability of quantum states has been studied to investigate foundational questions in quantum mechanics. It is also called quantum state elimination, because the goal of such a protocol is to guess which state, among finitely many chosen at random, the system is not prepared in (that is, it can be thought of as the first step in a process of elimination). Antidistinguishability has been used to investigate the reality of quantum states, ruling out ψ-epistemic ontological models of quantum mechanics (Pusey et al. in Nat Phys 8(6):475–478, 2012). Thus, due to the established importance of antidistinguishability in quantum mechanics, exploring it further is warranted. In this paper, we provide a comprehensive study of the optimal error exponent—the rate at which the optimal error probability vanishes to zero asymptotically—for classical and quantum antidistinguishability. We derive an exact expression for the optimal error exponent in the classical case and show that it is given by the multivariate classical Chernoff divergence. Our work thus provides this divergence with a meaningful operational interpretation as the optimal error exponent for antidistinguishing a set of probability measures. For the quantum case, we provide several bounds on the optimal error exponent: a lower bound given by the best pairwise Chernoff divergence of the states, a single-letter semi-definite programming upper bound, and lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit expression for the optimal error exponent for quantum antidistinguishability. 
    more » « less
  5. The pretty good measurement is a fundamental analytical tool in quantum information theory, giving a method for inferring the classical label that identifies a quantum state chosen probabilistically from an ensemble. Identifying and constructing the pretty good measurement for the class of bosonic Gaussian states is of immediate practical relevance in quantum information processing tasks. Holevo recently showed that the pretty good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement that attains the accessible information of the ensemble [IEEE Trans. Inf. Theory66(9) (2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty good measurement for a Gaussian ensemble of multimode bosonic states, with a focus on establishing an explicit and efficiently computable Gaussian description of the measurement. We also compute an explicit form of the mean square error of the pretty good measurement, which is relevant when using it for parameter estimation. Generalizing the pretty good measurement is a quantum instrument, called the pretty good instrument. We prove that the post-measurement state of the pretty good instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose covariance matrix satisfies a certain condition. Combined with our previous finding for the pretty good measurement and provided that the same condition holds, it follows that the expected output state is a faithful Gaussian state as well. In this case, we compute an explicit Gaussian description of the post-measurement and expected output states. Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is no longer merely an analytical tool, but that it can also be implemented experimentally in quantum optics laboratories. 
    more » « less
  6. We consider stellar interferometry in the continuous-variable (CV) quantum information formalism and use the quantum Fisher information (QFI) to characterize the performance of three key strategies: direct interferometry (DI), local heterodyne measurement, and a CV teleportation-based strategy. In the lossless regime, we show that a squeezing parameter of 𝑟 ≈ 2 (18 dB) is required to reach ∼95% of the QFI achievable with DI; such a squeezing level is beyond what has been achieved experimentally. In the low-loss regime, the CV teleportation strategy becomes inferior to DI, and the performance gap widens as loss increases. Curiously, in the high-loss regime, a small region of loss exists where the CV teleportation strategy slightly outperforms both DI and local heterodyne, representing a transition in the optimal strategy. We describe this advantage as limited because it occurs for a small region of loss, and the magnitude of the advantage is also small. We argue that practical difficulties further impede achieving any quantum advantage, limiting the merits of a CV teleportation-based strategy for stellar interferometry. 
    more » « less
  7. We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies. 
    more » « less
  8. Abstract Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation. 
    more » « less
  9. Symmetry is an important and unifying notion in many areas of physics. In quantum mechanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry to identify the possible physical transitions. This allows us to simplify calculations and characterize potentially complicated dynamics of the system with relative ease. Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures. In our present work, we develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers. Our approach estimates asymmetry measures based on the Hilbert–Schmidt distance, which is significantly easier, in a computational sense, than using fidelity as a metric. The method is derived to measure symmetries of states, channels, Lindbladians, and measurements. We apply this method to a number of scenarios involving open quantum systems, including the amplitude damping channel and a spin chain, and we test for symmetries within and outside the finite symmetry group of the Hamiltonian and Lindblad operators. 
    more » « less
  10. Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms on choice examples by using the variational approach to quantum algorithms, replacing the quantum prover with a parameterized circuit. We demonstrate this approach for numerous examples using the IBM quantum noiseless and noisy simulators, and we observe that the algorithms perform well in the noiseless case and exhibit noise resilience in the noisy case. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of these algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective. 
    more » « less